“To create a battery of the supercapacitor type, the following algorithm is used: first the masks are disinfected with ultrasound, then dipped in ‘ink’ made of graphene, which saturates the mask. Then the material is pressed under pressure and heated to 140°C (conventional supercapacitor batteries require very high temperatures for pyrolysis-carbonization, up to 1000-1300°C, while the new technology reduces energy consumption by a factor of 10). A separator (also made of mask material) with insulating properties is then placed between the two electrodes made of the new material. It is saturated with a special electrolyte, and then a protective shell is created from the material of medical blister packs (such as paracetamol)”, Professor Anvar Zakhidov, scientific leader of the infrastructure project “High-Performance, Flexible, Photovoltaic Devices Based in Hybrid Perovskites” at NUST MISiS, said.